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1 Notes on van Belle Chapter

[ Other references: Armitage & Berry Ch 7.2; Colton Ch 4 ]

Main reference: van Belle Chapter 5.2, 5.6 and 5.8

• Although Note 5.2.1 asks you to distinguish two theoretical situations:
σ1 = σ2 = σ, versus σ 6= σ2,these two are unfortunately seldom clearly
distinguishable in practice. The test of equal variances (section 5.7)
is not very accurate, and can easily be distorted by non-normaility.
JH advises doing both the common-variance and separate-variance tests
and reporting the less extreme p-value.

• Think of s2p, the “pooled” estimate of σ2 [van Belle, row 6 in Table 5.1]
as a weighted average of s21 and s22]?

• van Belle mentions one adjusted d.f. at the bottom of page 139. Software
packages use variants of the Welch-Satterthwaite1 approximation.

SAS PROC TTEST ”computes the group comparison t statistic based on
the assumption that the variances of the two groups are equal. It also
computes an approximate t based on the assumption that the variances
are unequal (the Behrens-Fisher problem). The degrees of freedom and
probability level are given for each;Satterthwaite’s (1946) approximation,

df = [((w1 + w2)2)/(([(w2
1)/(n1 − 1)] + [(w2

2)/(n2 − 1)]))]

1Satterthwaite, F. E. 1946. An approximate distribution of estimates of variance com-
ponents. Biometrics Bulletin 2: 110-114.
Welch, B. L. 1947. The generalization of student’s problem when several different popula-
tion variances are involved. Biometrika 34: 28-35.

where w1 = [(s21)/(n1 − 1)], and w2 = [(s22)/(n|2 − 1)]. is used to
compute the degrees of freedom associated with the approximate t. In
addition, you can request the Cochran and Cox (1950) approximation of
the probability level for the approximate t.”

R: if in t.test, one sets the logical variable var.equal to TRUE
then the pooled variance is used to estimate the variance; otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is
used.

• Example 5.4 (heights of husband-wife pairs): Since his chapter
deals with differences of independent random variables, he apologizes for
being possibly slightly unrealistic when he supposes that husband-
wide pairs are formed independent of stature .

Francis Galton2 studied Marriage Selection and reported that “whatever
may be the sexual preferences for similarity or for contrast, I find little
indication in the average results obtained from a fairly large number of
cases of any single measurable personal peculiarity, whether it be stature,
temper, eye-colour, or artistic tastes, in influencing marriage selection
to a notable degree. Nor is this extraordinary, for though people may
fall in love for trifles, marriage is a serious act, usually determined by
the concurrence of numerous motives. Therefore we could hardly expect
either shortness or, tallness, darkness or lightness in complexion, or any
other single quality, to have in the long run a large separate influence.”

Galton found a correlation of only 0.10 or so between the heights of
fathers and mothers, and so “I am therefore content to ignore it,
and to regard the Statures of married folk just as if their choice
in marriage had been wholly independent of stature.”. However,
we discovered that the correlation of poorly measured variables (such as
self-reported heights in Galton’s study) is less than it should be.

Karl Pearson, who had his graduate students carefully mea-
sured the heights of over 1000 husband-wife pairs3, found a
correlation of approximately 0.30 and commented that “there
is a very sensible resemblance in size between hustand and wife,
which à priori I should have said was hardly conceivable.”

It is not clear how strong the correlation is in today’s societies. But it is a
pity that van Belle did not check it out: he did however concede that his
supposition (of independence) was “probably contrary to societal mores.”

2Natural Inheritance, 1889, chapter VII.
3Table II, page 373 in Pearson, K., and Lee, A. (1903), On the Laws of Inheritance in

Man: I. Inheritance of Physical Characters, Biometrika, 2, 357462.
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2 Unequal Sample Sizes (n1 6= n2)

2.1 Effect of unequal sample sizes on precision of esti-
mated differences

If we write the SE of an estimated difference in mean responses as σ×(1/n1 +
1/n2)1/2, where σ is the (average) per unit variability of the response, then
we can establish the following principles4:

1. If costs and other factors (including unit variability) are equal,
and if both types of units are equally scarce or equally plentiful,
then for a given total sample size of n = n1+n2, an equal division of n i.e.
n1 = n2 is preferable since it yields a smaller SE(estimated difference in
means) than any non-symmetric division. However, the SE is relatively
unaffected until the ratio exceeds 70:30. This is seen in the following
table which, assuming σ = 1 (arbitrary), gives the value of SE(difference
in means) = (1/n1 + 1/n2)1/2 for various combinations of n1 and n2
adding to 100 (the 100 is also arbitrary).

n1 n2 SE (diff. in means) % Increase in SE
[(1/n1 + 1/n2)1/2] over SE50:50

50 50 0.200 —
60 40 0.204 2.1%
65 35 0.210 4.8%
70 30 0.218 9.1%
75 25 0.231 15.5%
80 20 0.250 25.5%
85 15 0.280 40.0%

2. If one type of unit is much scarcer, and thus the limiting factor,
then it makes sense to choose all (say n1) of the available scarcer units,
and some n2 ≥ n1 of the other type. The greater is n2, the smaller the
SE of the estimated difference. However, there is a ‘law of diminishing
returns’ once n2 is more than a few multiples of n1. This is seen in the
following table which gives the value of (1/n1 + 1/n2)1/2 for n1 fixed
(arbitrarily) at 100, and n2 ranging from 1 × n1 to 100 × n1; again, we
assume σ = 1.

4Note: these principles apply to both measurement and count data

SEK:1 SEK:1

Ratio as % of as % of
n1 n2 (K) SE(µ̂1 − µ̂2) SE1:1 SE∞:1* IK : I∞
50 50 1.0 0.2000 — 1.414 0.50
50 75 1.5 0.1825 91.3% 1.290 0.60
50 100 2.0 0.1732 86.6% 1.225 0.67
50 150 3.0 0.1633 81.6% 1.155 0.75
50 200 4.0 0.1581 79.1% 1.118 0.80
50 250 5.0 0.1549 77.5% 1.095 0.83
50 300 6.0 0.1527 76.4% 1.080 0.86
50 400 8.0 0.1500 75.0% 1.061 0.89
50 500 10.0 0.1483 74.2% 1.049 0.91
50 1000 20.0 0.1449 72.4% 1.025 0.95
50 5000 100.0 0.1421 71.1% 1.005 0.99
50 ∞ ∞ 0.1414 70.7% 1.000 1.00

This table is the basis for the ‘epidemiologic rule of thumb’ that a n2 :
n1 ratio of more than 4 is wasteful. The 4 seems to have arisen by
focusing on 80% efficiency : if we use I = Information, i.e., Inverse
of Variance – as the criterion, one can see that, relative to the perfect
(100%) information with an infinite n2 : n1 ratio, the information with a
ratio of K is K/(K + 1), which indeed attains a value of 0.8 with K = 4.

2.2 Sample size calculations when using unequal sample
sizes to estimate / test difference in 2 means

For power (sensitivity) 1− β, and specificity 1−α (2-sided), the sample sizes
n1 and n2 have to be such that

Zα/2 × SE(ȳ1 − ȳ2)− Zβ × SE(ȳ1 − ȳ2) = ∆ = µ2 − µ1

(if β < 0.5, then Zβ will be negative). If we assume equal per unit variability,
σ, of the y’s in the 2 populations, we can write the requirement as

Zα/2 × σ × (1/n1 + 1/n2)1/2 − Zβ × σ × (1/n1 + 1/n2)1/2 = ∆

If we rewrite (1/n1 + 1/n2)1/2 as ([1/n1] × [1/n1 + 1/n2])1/2 and rearrange
the inequality, we get

n1 =

{
1 +

n1
n2

}
(Zα/2 − Zβ)2

{
σ

∆

}2

.
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or, denoting n2/n1 by K,

n1 =

{
1 +

1

K

}
(Zα/2 − Zβ)2

{
σ

∆

}2

.

i.e., with nsmaller denoting the smaller sample size, ...

nsmaller =

{
K + 1

K

}
(Zα/2 − Zβ)2

{
σ

∆

}2

.

If K = 1, so that n1 = n2, then we get the familiar “2” at the front of the
sample size formula for each group.

3 Power / Precision / Sample Size: Correlated
responses; cluster samples

Suppose that, instead of n independent responses (y’s) from population (con-
dition) 1, and a separate n independent responses from population (condition)
2, we have responses on n = m× k individuals from m clusters of size k each,
from population (condition) 1, and on a separate set of n individuals from
m clusters of size k each, from population (condition) 2. Examples might be
responses of persons in same family or school or medical practice—or even
several responses for each subject. Suppose the intra-class correlation is

icc = σ2
b/(σ

2
b + σ2

w),

where σ2
b denotes the variance of the (true) cluster means [within the same

population], and σ2
w denotes the within-cluster variance. Assume that the icc

has the same value for each population.

Let ȳ1i be the mean of the k y’s measured on the ith sampled cluster from
population 1 (i = 1, . . . ,m), and let ȳ2 be the mean of the k values measured
for the ith cluster sampled from population 2.

Define ¯̄y1 = (1/m)
∑
i ȳ1i for the sample from population 1, and correspond-

ingly ¯̄y2 for the one from population 2.

Then V ar[¯̄y1] = (1/m)2 ×
∑m

1 V ar[ȳ1i].

Now, V ar[ȳ1i] = σ2
b + (1/k)σ2

w,

so V ar[¯̄y1] = (1/m)2 ×m× {σ2
b + (1/k)σ2

w} = (1/m)σ2
b + (1/{m× k})σ2

w.

Thus

V ar[¯̄y1] =
σ2
b

no. of clusters
+

σ2
w

no. of individuals
.

If we had responses from n unrelated individuals, i.e., if we had m = n and
k = 1, then

V ar[¯̄y1] =
σ2
b + σ2

w

no. of individuals
.

The ratio of the variance with n = m× k to that with n = n× 1 is therefore{
σ2
b

m
+
σ2
w

mk

}
÷
{
σ2
b + σ2

w

mk

}
=
kσ2

b + σ2
w

σ2
b + σ2

w

= 1+(k−1)
σ2
b

σ2
b + σ2

w

= 1+(k−1)icc.

i.e., the Variance (or Sample Size) Inflation Factor (VIF or SSIF) is

VIF = SSIV = 1 + (k − 1)× icc.

Thus, if the value of icc is positive, there is less information in a cluster sample
of a total of n individuals than there would be in a sample of n unrelated
individuals. However, the greater amount of information obtained from a
sample of n unrelated individuals might well cost a lot more to obtain, and
so the cluster sampling approach may be the more efficient option. In some
instances, it may be that the intervention is carried out at the level of the
cluster, and it would not make sense to study just one individual per cluster.

A positive correlation doesn’t always increase variance. It depends
on how you use it!

Paul Burton5 puts it nicely...

It is clear that if a standard statistical analysis which assumes all
observations to be independent is performed on repeated measures
(or other correlated) data when the intraclass correlation is positive,
results may be misleading. For example, estimated standard errors
are likely to be too small, the analysis will effectively assume that
there is more information in the data than there really is. Such an
analysis has been referred to as naive pooling.

Given that correlation can lead to a loss of information, it may seem
surprising that repeated measures designs are used so commonly.
However, when interest centres on a change in response un-
der different conditions or over time, the [longitudinal] cor-
relation between repeated observations means that within-
person changes can be highly informative because they min-
imize the “noise” arising from between-person variability.

5Statistics in Medicine 17, 1261-1291 (1998) Tutorial in Biostatistics: Extending the
simple linear regression model to account for correlated responses: an introduction to gen-
eralized estimating equations and multi-level modelling. Paul Burton, L Gurrin, & P Sly.
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Thus, if one wished to test a new drug purporting to increase height
in middle-aged adults, the fact that height is essentially constant in
this age group means that the change in height within subjects (be-
fore drug versus after) will provide a powerful test of efficacy. In such
circumstances, ignoring the correlation structure can waste impor-
tant information and can make standard errors too large, as when
an unpaired t-test is used on paired data with a positive intraclass
correlation.

E.S. Pearson, in his appreciation ”Student as a Statistician”6 gives us a good
example from Student’s writings:

One of the striking characteristics of these papers, also of course
evident in correspondence, was the simplicity of the statistical tech-
nique he used. The mean, the standard deviation and the correlation
coefficient were his chief tools; hardly adequate for treating special-
ized problems it might be thought; yet how extremely effective in
fact in his skilled hands! There is one very simple and illu-
minating theme which will be found to run as a keynote
through much of his work, and may be expressed in the
two formulae:

σ2
x+y = σ2

x + σ2
y + 2ρσxσy

σ2
x−y = σ2

x + σ2
y − 2ρσxσy

Perhaps we may count as one of his big achievements the demon-
stration in many fields of the meaning of the second of these short
equations; as he wrote in 1923 [p. 273, “On testing varieties of cere-
als.” Biometrika, Vol 15] but with modified notation:

“The art of designing all experiments lies even more in ar-
ranging matters so that ρ is as large as possible than in
reducing σ2

x and σ2
y.

It is a simple idea, certainly, but I cannot doubt that its emphasis
and amplification helped to open the way to all the modern devel-
opments of analysis of variance, and there may be some who have
felt that where this technique runs a risk of defeating its ends by
over-elaboration is just where that simple maxim has been set on
one side.

6Biometrika, Vol. 30, No. 3/4. (Jan., 1939), pp. 210-250.

4 “Eye test” using overlap of 2 indep’t CI’s

|----------x----------|

Overlapping CI’s

|----------x----------|

How far apart do two independent ȳ’s, say ȳ1 and ȳ2 to be for a formal
statistical test, using say an α = 0.05, two sided, of µ1 = µ2, to be to be sta-
tistically significant? If their associated CI’s overlap, does that mean
the difference between them is not statistically significant? 7

I using a z-test, they will be significantly different if

|ȳ1 − ȳ2| ≥ 1.96× {(SE[ȳ1])2 + (SE[ȳ1])2}1/2

If SE[ȳ1] and SE[ȳw] are about the same size (as they would be if the 2 n’s,
and the per-unit variability, were about the same), then, denoting each SEM
by SE[ȳeach], they are significant if...

|ȳ1 − ȳ2| ≥ 1.96× {2× (SE[ȳeach])2}1/2.

i.e.

|ȳ1 − ȳ2| ≥ 1.96× 21/2 × SE[ȳeach],

or...

|ȳ1 − ȳ2| ≥ 2.77× SE[ȳeach].

If using t rather than z, the multiple would be somewhat higher than 1.96, so
that when multiplied by 21/2, it would be higher than 2.77, closer to 3. Thus
a rough answer to the question could be taht they are significantly different if

|ȳ1 − ȳ2| ≥ 3× SE[ȳeach].

This means that even when two 100(1 − α)% CI’s overlap slightly, as
above, the difference between the two means could be statistically significant
at the α level. This is why Lincoln Moses, in his article on graphical displays
(see reserve material), advocates plotting the 2 CI’s formed by

ȳ1 ± 1.5× SE[ȳ1] and ȳ2 ± 1.5× SE[ȳ2]

7See Wolfe R, Hanley J. “If we’re so different, why do we keep overlapping? When 1
plus 1 doesn’t make 2.” Canadian Med Assoc. J. 2002 Jan 8;166(1):65-66.
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This way, we can be reasonably sure that if the CI’s do not overlap (i.e., if ȳ1
and ȳ2 are more than 3 SE[ȳeach]’s apart) then the difference between them
is statistically significant at the α = 0.05 level, and vice versa.

Notes:

• estimate± 1.5SE[estimate] corresponds to an 86% CI if using Z distri-
bution.

• The above logic applies for other symmetric CI’s too.

5 Permutation tests

From Section 21 ”Test of a Wider Hypothesis” beginning on page 44 of
Chapter III of Fisher’s Design of Experiments

It has been mentioned that “Student’s” t test, in conformity with the
classicaI theory of errors, is appropriate to the null hypothesis that
the two groups of measurements are samples drawn from the same
normally distributed population. This is the type of null hypothesis
which experimenters, rightly in the author’s opinion, usually consider
it appropriate to test, for reasons not only of practical convenience,
but because the unique properties of the normal distribution make
it alone suitable for general application.

There has, however, in recent years, been a tendency for theoretical
statisticians, not closely in touch with the requirements of experi-
mental data, to stress the element of normality, in the hypothesis
tested, as though it were a serious limitation to the test applied.
It is, indeed, demonstrable that, as a test of this hypothesis, the
exactitude of “Student’s” t test is absolute.

It may, nevertheless, be legitimately asked whether we should obtain
a materially different result were it possible to test the wider hy-
pothesis which merely asserts that the two series are drawn from
the same population, without specifying that this is normally
distributed.

In these discussions it seems to have escaped recognition that the
physical act of randomisation, which, as has been shown, is neces-
sary for the validity of any test of significance, affords the means,
in respect of any particular body of data, of examining the wider
hypothesis in which no normality of distribution is implied. The
arithmetical procedure of such an examination is tedious, and we

shall only give the results of its application in order to show the pos-
sibility of an independent check on the more expeditious methods in
common use.

On the hypothesis that the two series of seeds are random
samples from identical populations, and that their sites have
been assigned to members of each pair independently at
random, the 15 differences of Table 3 would each have oc-
curred with equal frequency with a positive or with a neg-
ative sign. Their sum, taking account of the two negative signs
which have actually occurred, is 314, and we may ask how many of
the 215 numbers, which may be formed by giving each component
alternatively a positive and a negative sign, exceed this value. Since
ex hypothesi each of these 215 combinations will occur by chance
with equal frequency, a knowledge of how many of them are equal
to or greater than the value actually observed affords a direct arith-
metical test of the significance of this value. It is easy to see [JH:
typical Fisher phrase!] that if there were no negative signs, or only
one, every possible combination would exceed 314, while if the neg-
ative signs are 7 or more, every possible combination will fall short
of this value. The distribution of the cases, when there are from 2
to 6 negative values, is shown in the following table :-
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a result very nearly equivalent to that obtained using the t test with
the hypothesis of a normally distributed population. Slight as it is,
indeed, the difference between the tests of these two hypotheses is
partly due to the continuity of the t distribution, which effectively
counts only half of the 28 cases which give a total of exactly 314, as
being as great as or greater than the observed value.

Both tests prove that, in about 5 per cent. of trials, samples from
the same batch of seed would show differences just as great, and
as regular, as those observed; so that the experimental evidence is
scarcely sufficient to stand alone. In conjunction with other exper-
iments, however, showing a consistent advantage of cross-fertilised
seed, the experiment has considerable weight ; since only once in 40
trials would a chance deviation have been observed both so large,
and in the right direction.

(omitted... a paragraph on a continuity correction)

21.1. “Non-parametric” Tests

In recent years tests using the physical act of randomisation to sup-
ply (on the Null Hypothesis) a frequency distribution, have been
largely advocated under the name of “Non-parametric” tests. Some-
what extravagant claims have often been made on their behalf. The
example of this Chapter, published in 1935, was by many years the
first of its class. The reader will realise that it was in no sense put
forward to supersede the common and expeditious tests based on the
Gaussian theory of errors. The utility of such non-parametric tests
consists in their being able to supply confirmation whenever, rightly
or, more often, wrongly, it is suspected that the simpler tests have
been appreciably injured by departures from normality.

They assume less knowledge, or more ignorance, of the experimental
material than do the standard tests, and this has been an attraction
to some mathematicians who often discuss experimentation without
personal knowledge of the material. In inductive logic, however, an
erroneous assumption of ignorance is not innocuous ; it often leads
to manifest absurdities. Experimenters should remember that they
and their colleagues usually know more about the kind of material
they are dealing with than do the authors of text-books written
without such personal experience, and that a more complex, or less
intelligible, test is not likely to serve their purpose better, in any
sense, than those of proved value in their own subject.

Note from JH: There is a corresponding permutation test for 2 independent
samples. Both permutation tests use the raw data, not the ranks.

.
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6 t-based CI/test re µ and µ2−µ1: by regression

6.1 Inference regarding a single µ: data from 1- (or
paired-) sample

4.5

5.0

5.5

6.0

52

54

56

58

60

62

Heights (inches) of 14 
11 year-old males from 
Alberta study

Cavendish's 29 
measurements of the 
earth's density

2

3

4

5

6

7

8

9

10

Half-life of Caffeine 
(hours) in n=13 
healthy non-smokers

Statistics

n ... 29 ................... 14 ................. 13
Min ..... 4.88 ................... 53.00 ................... 9.40
Max ..... 5.85 ................... 61.00 ................... 5.95
Mean (ȳ) ..... 5.45 ................... 57.21 ................... 5.95
Var (s2) ..... 0.0488 ..................... 4.9506 ................... 3.9460
SD (s) ..... 0.22 ..................... 2.22 ................... 1.99

Least Squares Estimate of µ:∑
(y − ȳ)2 is smaller than

∑
(y − any other central value)2.

That’s why we can call the statistic ȳ the Least Squares estimator of µ. (see
applet on best location to wait for elevator in Ch 1 Resources for 607, and
’elevator article’ in Ch 1 of Course 697; see also applets in Ch 10 for 607)

Statistical Model:

y = µ+ ε
ε ∼ ?(0, σ)

“Minimum Requirements” for Least Squares Estimation per se:

There is no requirement that ε ∼ N(0, σ). Later, for statistical inferences
about the parameters being estimated, the inferences may be somewhat inac-
curate if n is small and the distribution of the ε’s is not N(0, σ) or if the ε’s
are not independent of each other.

Fitting (i.e. calculating parameter estimates of) model for height:

By calculator (or SAS PROC MEANS or mean and var functions in R):

ȳ =

∑
y

n
= 57.21; s2 =

∑
(y − ȳ)2

n− 1
= 64.357/13 = 4.95 → s = 2.22.

From R.. summary( lm(height ∼ 1) )

Residuals:

Min 1Q Median 3Q Max

-4.2143 -1.9643 0.2857 1.5357 3.7857

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.21 0.59 96.22 <2e-16 ***

Residual standard error: 2.22 on 13 degrees of freedom

Finding parameter estimates on output of statistical package

If you compare with the calculations above, you will readily identify the esti-
mate ȳ = 57.21 for the µ parameter.

But what is the estimate of the σ2 or σ parameter? We know from our
calculator that σ̂ = 2.22. In the R output (SAS output later!), this estimate is
given under the less familiar8 term Residual standard error. You can think of
each (y− ȳ) as the ‘residual’ variation from the mean ȳ, and you can therefore
call

∑
(y−ȳ)2 the Sum of Squares of the Residuals, or Residual Sum of Squares

for short.

8Residual standard deviation, or Root Mean Square Error, RMSE, would confuse less.
Systat uses the term Standard Error of Estimate; SPSS uses this ‘SEE’ terminology too.
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What of the other items on the output?

* What is Std. Error = 0.59465 ? It is the SE of Intercept i.e. of ȳ.

It is what we call the Standard Error of the Mean, or ‘SEM’ for short, given
by the formula

Standard Error of Mean = SEM = SE(ȳ) = s/n1/2 = 2.22/141/2 = 0.59.

* What is t value = 96?

It is the test statistic corresponding to the test of whether the underlying
parameter (µ in our case) is ZERO i.e. of the H0 : µ = 0. Of course, the
computer programmer doesn’t know what µ refers to, or that the mean height
of 11 year old boys in Alberta is, by definition, greater than zero. Since we
might have a case where there was genuine interest in the H0 that µ = 0 or
some other value9, we will show where t = 96 came from: remember from
earlier the 1-sample t-test and the formula

t = (ȳ − 0)/SE(ȳ) = 57.21/0.59 = 96.22.

* What is Pr(>|t|) <2e-16 ?

It is the P-value obtained by calculating the probability that an observation
from the t distribution with n − 1 = 13 df would exceed 96.22 in absolute
value.

Fitting “the beginning of all regression models” using SAS:

proc reg data=sasuser.alberta; model height = ;

JH discovered this way of calculating ȳ by accident – he forgot to put terms
on the right hand side of the model statement!

The model is simply
y = µ+ ε

but it can be thought of as
y = µ× 1 + ε

or
y = µ× x0 + ε.

where x0 ≡ 1(a constant); it is as though we have set it up so that the
“predictor variable” x0 in the regression equation is always 1. Then µ is the
parameter to be estimated.

9e.g., We might ask if Cavendish’s measurements of the Earth’s density are compatible
with today’s accepted value of 5.518.

Some software programs insist that you specify the constant; others assume
it unless told otherwise.

* Output from SAS PROC REG Dependent Variable: height

Analysis of Variance*

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 0 0.000 . . .

Error 13 64.357 4.95

C Total 13 64.357

Root MSE 2.22 R-square 0.0000

Dep Mean 57.21 Adj R-sq 0.0000

C.V. 3.89

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEPT 1 57.21 0.59 96.2 0.0001

Note the name SAS gives to the square root of the average of the squared resid-
uals: Root Mean Square Error, shortened to ROOT MSE i.e., average squared
deviation = 64.357/13 = 4.95; 4.951/2 = 2.22.

Here they are less confusing than SPSS and SYSTAT (to be fair, SEE is used
a lot in measurement and psychophysics for variation of measurements on
individuals [i.e., no n1/2 involved], rather than of statistics)

8
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6.2 (via Regression) Inference regarding a difference,
µ2 − µ1, of 2 means

11 year olds adultsBoys

MALE FEMALE
50

55

60

65

70

11 12
50

55

60

65

70

AGE

0

2

4

6

8

10

NON 
SMOKERS

SMOKERS

n 14 16 | 14 33 | 13 13
ȳ − ȳ | ȳ − ȳ | ȳ − ȳ

ȳ 57.21 57.25 0.04 | 57.21 59.00 1.79 | 5.95 3.53 -2.42
s 2.22 3.41 | 2.22 3.05 | 1.99 1.43

Var* t df Prob | t df Prob | t df Prob
S 0.03 26.0 0.973 | 2.24 33.4 0.032 | -3.56 21.8 0.002
P 0.03 28 0.974 | 1.97 45 0.055 | -3.56 24 0.002

*Var: S = Separate variances t-test; P = Pooled variances* t-test

For later: male vs female heights: s2pooled = 13×2.222+15×3.412
13+15 = 8.5 = 2.922.

Statistical Model for difference in mean height of males and females
(see M & M p 663)

Males: y ∼ µMALE + ε Females: y ∼ µFEMALE + ε
ε ∼ N(0, σ)

All: y ∼ µMALE + (µFEMALE − µMALE)× IFEMALE + ε

IFEMALE = “Indicator” of Female: so, 0 if Male; 1 if Female.

Or, in more conventional Greek letters... i.e. β1 = µF − µM

y = β0 + β1 × IFEMALE + ε.

Fitting (i.e. calculating the parameter estimates of) the model

By calculator: β̂0 = b1 = “slope” =
∑

(x− x̄)(y − ȳ)/
∑

(x− x̄)2 ;

β̂0 = b0 = “intercept” = ȳ − b1 × x̄ ;

σ̂2 = “MSE” = mean[residual2] =
∑

(y − ŷ)2/(n− 2).

By software: in R: summary( lm(height i.female) )

Residuals:

Min 1Q Median 3Q Max

-6.2500 -1.9732 -0.2143 1.7857 4.7500

Coefficients:

......... Estimate Std.Error t-value ..Pr(>|t|)

(Intercept) . 57.21 ... 0.78 . 73.22 . <2e-16

i.female ..... 0.04 ... 1.07 .. 0.03 .. 0.974

Residual standard error: 2.924* on 28 df

Mult. R-Sq: 3.979e-05, Adjusted R-sq: -0.03567

F-statistic: 0.0011 on 1 & 28 df, p-value: 0.97

“Translation”

β̂0 = estimate of µMALE = 0.04

β̂1 = estimate of µFEMALE − µMALE = 57.21
σ̂ = 2.92.

9
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*Residuals are calculated by squaring the deviation of each y from the esti-
mated (fitted) mean for persons with the same “x” value – in this case those
of the same sex – summing them to give 239.357, and dividing this sum by
28 to get 8.5485.

This is the same procedure used to calculate a pooled variance for
a 2-sample t-test! So the regression model ’recovers’ the original
means and pooled variance!

Regression approach also reproduces another familiar quantity:

SE[ȳFEMALE − ȳMALE ] = SE[β̂i.female]

SE[ȳF − ȳM ] = (s2pooled)
1/2 × (1/nf + 1/nm)1/2

= 2.924× (1/nf + 1/nm)1/2

= 1.07.

SE[β̂i.f] = {MSE/
∑

(x− x̄)2}1/2

= {MSE/
∑

(i.female− i.female)2}1/2

= {MSE/[(nf + nm)× (nf/(nf + nm))× (nm/(nf + nm))]}1/2

= {MSE/[(nf × nf )/(nf + nm)]}1/2

= {MSE× (1/nf + 1/nf )}1/2

= RMSE× (1/nf + 1/nf )1/2

= 2.924× (1/nf + 1/nm)1/2

= 1.07. FISHER, Sir Ronald Aylmer 1890-1962

Photograph (supplied by Fisher Memorial Committee) by Antony Barrington-
Brown, as reproduced as frontispiece of R A Fisher, Collected Papers, Vol.5,
Adelaide: Department of Genetics of the University of Adelaide; and also as
frontispiece of J F Box, R.A. Fisher: The Life of a Scientist, New York: Wiley
1978.
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0 (possible questions for) ASSIGNMENT on
mean differences and differences in means

0.1 Questions re van Belle et al.

1. For each of Problems 5.1 to 5.11 and 5.13 to 5.16 (p141 to 149) say
whether the inference involves a single µY , a single µD where D is a
paired difference Y1 − Y0, or the difference µ2 − µ1.

2. Explain why, in the worked examples 5.6 and 5.7, page 136-137, the sam-
ple size formula used does not seem to involve σ. Is it a typo, or something
else? Hint: look up the term “effect size”, used a lot in psychometrics,
clinical epidemiology, etc, when using instruments with an arbitrary scale
(e.g. GRE scores)

3. In Comment 2. at the bottom of page 137, the authors suggest a simple
rule of thumb to increase the sample sizes to compensate for using zα/2
and zβ rather than tα/2 and tβ . Sample size tables based on the t dis-
tribution, taken from the CRC tables, are given in the attached excerpts
from JH’s Notes. Does the rule of thumb match what is in these tables?
[extensive comparisons not required]

0.2 What if the primary end-point was the Length of
Stay [LOS]?

The following excerpts are from the article Perioperative Normothermia to
reduce the incidence of surgical-wound infection and shorten hospitalization.
A Kurz et al. N Engl J Med 1996;334:1209-15.

Abstract

Background: Mild perioperative hypothermia, which is common
during major surgery, may promote surgical-wound infection by trig-
gering thermoregulatory vasoconstriction, which decreases subcuta-
neous oxygen tension. Reduced levels of oxygen in tissue impair
oxidative killing by neutrophils and decrease the strength of the heal-
ing wound by reducing the deposition of collagen. Hypothermia also
directly impairs immune function. We tested the hypothesis that hy-
pothermia both increases susceptibility to surgical-wound infection
and lengthens hospitalization.

Methods: Two hundred patients undergoing colorectal surgery
were randomly assigned to routine intraoperative thermal care

(the hypothermia group) or additional warming (the normothermia
group). The patients anesthetic care was standardized, and they
were all given cefamandole and metronidazole. In a double-blind
protocol, their wounds were evaluated daily until discharge from
the hospital and in the clinic after two weeks; wounds containing
culture-positive pus were considered infected. The patients’ surgeons
remained unaware of the patients’ group assignments.

Results: The mean (SD10) final intraoperative core temperature
was 34.7(0.6)C in the hypothermia group and 36.6(0.5)C in the nor-
mothermia group (P ...). Surgical-wound infections were found in
x of 96 patients assigned to hypothermia (a percent) but in only y
of 104 patients assigned to normothermia (b percent, P ... ). The
sutures were removed one day later in the patients assigned to hy-
pothermia than in those assigned to normothermia (P ...), and the
duration of hospitalization was ******ed by x.x days (approximately
pp percent) in the hypothermia group (P ...).

Conclusions: ....

Methods (2 paragraphs from the Methods section in full text)

The number of patients required for this trial was estimated on the
basis of a preliminary study in which 80 patients undergoing elective
colon surgery were randomly assigned to hypothermia (mean [SD]
temperature, 34.4(0.4)C or normothermia (involving warming with
forced air and fluid to a mean temperature of 37(0.3). The number
of wound infections (as defined by the presence of pus and a positive
culture) was evaluated by an observer unaware of the patients’ tem-
peratures and group assignments. Nine infections occurred in the 38
patients assigned to hypothermia, but there were only four in the 42
patients assigned to normothermia (P = 0.16).

Using the observed difference in the incidence of infection, we deter-
mined that an enrollment of 400 patients would provide a 90 percent
chance of identifying a difference with an alpha value of 0.01. We
therefore planned to study a maximum of 400 patients, with the re-
sults to be evaluated after 200 and 300 patients had been studied.
The prospective criterion for ending the study early was a difference
in the incidence of surgical-wound infection between the two groups
with a P value of less than 0.01. To compensate for the two initial
analyses, a P value of 0.03 would be required when the study of 400

10The NEJM continues to use ±SD. JH has deleted the ± and given the SD for what it
is, a positive quabtity!
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patients was completed. The combined risk of a type I error was
thus less than 5 percent.

Comment [JH]: As you can see, they planned the sample size on the basis
of their primary endpoint, the incidence of infection. JH does not like the
way they chose the “delta” i.e. as the observed difference in the preliminary
study; he prefers to define delta as “the difference that would make a difference
– a clinical judgment that also takes costs and other practical issues into
consideration.

Question: Suppose that hospital administrators consider that shortening of
the length of stay [LOS] by 1 day would be quite substantial if it could be
achieved. Suppose further that in similar admissions last year, the mean(SD)
hospitalization was 15(7) days. Calculate the required sample size using the
same “90 percent chance of identifying a difference with an alpha value of
0.01” (ignore for now the compensation for the interim analyses).

0.3 Permutation test rather than paired t-test

See Fisher’s application of his permutation test to Darwin’s (paired) data
on growth of plants. He admits that the “arithmetical procedure of such an
examination is tedious.” Since the task could get even more tedious if there
were greater numbers of pairs involved, an alternative is to sample from this
permutation distribution.

Use R (or SAS or SPSS) to take a sample of the 215 permutations, and thus of
the possible sums, and estimate the P-value by calculating what % of them
are exceeded by the observed sum.

0.4 Births after The Great Blackout of 1966

On November 9, 1965, the electric power went out in New York City, and it
stayed out for a day – The Great Blackout. Nine months later, newspapers
suggested that New York was experiencing a baby boom. The table shows the
number of babies born every day during a twenty-five day period, centered
nine months and ten days after The Great Blackout.

Number of births in New York, Monday August 1-Thursday August 25, 1966.

Mon Tue Wed Thu Fri Sat Sun
451 468 429 448 466 377 344
448 438 455 468 462 405 377
451 497 458 429 434 410 351
467 508 432 426

These numbers average 436. This turns out to be not unusually high for New
York. But there is an interesting twist: the 3 Sundays only average 357.

1. In a previous assignment, you were asked how likely is it that the average
of three days chosen at random from the table will be 357 or less. Most
of you set this up as a 1-sample hypothesis test, with

H0 : µSundays = µother days,with µother days known to be 436,

Halt : µSundays < µother days,with µother days known to be 436.

and your Sunday data consisted of n = 3 observations, with ȳ3 = 357.
You would use the t or z distribution, depending on whether you knew
or estimated σ.

Exercise 1: Repeat the testing, but using a permutation approach, i.e.
enumerate all of the possible random samples of sizes 3 and 22, and
determine the fraction of such instances in which ȳ3 < ȳ22

Exercise 2: Repeat the testing, but using a permutation of the ranks
approach, i.e. enumerate all of the possible random samples of sizes 3 and
22, and determine the fraction of such instances in which rank3 < rank22,
i.e., in which the average rank in the sample of 3 was lower than the
average rank in the remaining sample of 22.

In their text Statistics, Freedman et al. tell us that “Apparently, the New
York Times sent a reporter around to a few hospitals on Monday August
8, and Tuesday August 9, nine months after the blackout. The hospitals
reported that their obstetric wards were busier than usual – apparently
because of the general pattern that weekends are slow, Mondays and
Tuesdays are busy. These “findings” were published in a front-page article
on Wednesday, August 10, 1966, under the headline ”Births Up 9 Months
After the Blackout.” This seems to be the origin of the baby-boom myth.”

0.5 Reducing the rate of drop-out from exercise classes

Drop-out from exercise classes is substantial. In a study about which JH was
consulted, 4 of 8 exercise classes at U. de M. were randomly assigned to receive
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weekly counselling by a sports psychologist on how to “hang in there” while
the other 4 served as a comparison. The mean number of sessions attended
was calculated for each class (the mean for a class would be 20 if all 25 students
in the class attended all 20 sessions). The means for the 4 experimental classes
were 11.1, 12.2, 9.4, and 11.7; the means for the comparison classes were 9.6,
9.2, 10.3, and 9.7.

1. Carry out a 2-sample t-test.

2. The PI was very reluctant to use a t-test, since she thought the sample
sizes (4 and 4) were too small and she was unable to check (or speculate)
that the values come from 2 Normal distributions. Carry out a permuta-
tion test instead – assume that the 4 experimental classes were randomly
chosen from the 8.

0.6 The effect of working serial night shifts on the cog-
nitive functioning of emergency physicians

1. The mean day-shift KAIT score was 119.1 (SD=7.7), and the mean night-
shift KAIT score was 107.2 (SD=10.2). This difference was significant
(mean difference=11.9; 95% confidence interval 7.0 to 16.8; P < 0.001),
with the dayshift scores being statistically higher than the night-shift
scores” (Abstract; but see also more complete summaries in Table 1)

(a) Reconstruct the 95% CI 7.0 to 16.8 from the summaries given.

(b) State the null and alternative hypotheses tested and verify that ”P
< 0.001”

(c) Why, in the last row of the Table, doesn’t (7.722 + 10.22)1/2 equal 9.2
?

2. Residents in group B, who were tested first after working night shifts,
had a larger difference between their 2 scores than residents in group A,
who were tested first on the day shift (night first: mean difference=17.1
[SD=8.6]; day first: mean difference= 6.6 [SD=6.7]; P=.017). On the
basis of these scores, the order of testing with the KAIT (night first or
day first) did make a difference” [Bottom of page 153 and top of page
154]

(a) Reconstruct the P-value (0.017) from the summaries given.

(b) Explain in words – to a resident who is working the day shift – what
the P-value of 0.017 is (after the night shift, don’t even try!).

(c) Why did the order of testing make a difference? What is the lesson
for investigators who are attracted to the crossover design?

0.7 Paracetamol and Fever

1. Entry was limited to children with temperatures between 38C and 41C.

Given the mean of 38.9C and the SD of 0.9, what can you say about the
shape of the frequency distribution over the 38C-41C interval? (give a
sketch)

2. “We estimated a sample size requirement of 210 subjects completing the
trial” (Sample size paragraph 5 of Methods)

Give the formula by which the authors estimated this (identify what
numbers go with what parameters, but leave the calculations to your
assistant [who has not taken a statistics course])

3. “Student’s t-test and Mann-Whitney (alias Wilcoxon) test...” (Statistical
testing paragraph 5 of Methods)

Why did the authors use the Mann-Whitney (alias Wilcoxon) test? In
light of the n’s and the shape of the distribution of duration of fever, was
their concern about the use of the t test justified?

4. “The mean duration of fever...” [paragraph 4 of Results]

Explain in a sentence, in non-technical words, the phrase ”the differences
were statistically non-significant”

5. “The 95% CI for the differences between the paracetamol and placebo
groups for duration of fever was -10.0 to +7.1 h”

Explain in non-technical words what this statement says.

6. How does this CI add to what is shown in Figure 1?

7. How was the CI calculated?

8. Before the study, the authors anticipated a SD of 2 days (48 hours) for
the duration of fever. The SD of the duration of fever observed in the
n=225 is not reported explicitly.

How could one reconstruct this SD from the results given [assume that
the SD is the same in the two treatment groups]?

9. “Children..were more likely to be rated as having at least a 1-category
improvement in activity....” [2nd last paragraph of Results]

What tests could be used to compare the two groups? Do they all give
the same answer?
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10. “On the basis of ...completing the trial” [sample size considerations, first
sentence of paragraph 5 of Methods]

“There were no significant differences between groups in mean duration
of subsequent fever” [Abstract]

If these two statements were the ONLY information you were given about
the trial, what could you conclude?

0.8 Detectable Differences

with available sample size in “Probit II” , ie., followup to “Promotion of
Breastfeeding Intervention Trial (PROBIT): A Randomized Trial in
Republic of Belarus” 11

[courtesy M Kramer, R Platt]

Context: Current evidence that breastfeeding is beneficial for infant and
child health is based exclusively on observational studies. Potential sources
of bias in such studies have led to doubts about the magnitude of these
health benefits in industrialized countries. Objective: To assess the ef-
fects of breastfeeding promotion on breastfeeding duration and exclusivity
and gastrointestinal and respiratory infection and atopic eczema among in-
fants. Design: The Promotion of Breastfeeding Intervention Trial (PRO-
BIT), a cluster-randomized trial conducted June 1996December 1997 with a
1-year follow-up. Setting: Thirty-one maternity hospitals and polyclinics
in the Republic of Belarus. Participants: A total of 17 046 mother-infant
pairs consisting of full-term singleton infants weighing at least 2500 g and
their healthy mothers who intended to breastfeed, 16491 (96.7%) of which
completed the entire 12 months of follow-up. Interventions: Sites were ran-
domly assigned to receive an experimental intervention (n = 16) modeled on
the Baby-Friendly Hospital Initiative of the World Health Organization and
United Nations Children’s Fund, which emphasizes health care worker assis-
tance with initiating and maintaining breastfeeding and lactation and post-
natal breastfeeding support, or a control intervention (n = 15) of continuing
usual infant feeding practices and policies. Main Outcome Measures: Du-
ration of any breastfeeding, prevalence of predominant and exclusive breast-
feeding at 3 and 6 months of life and occurrence of 1 or more episodes of
gastrointestinal tract infection, 2 or more episodes of respiratory tract infec-
tion, and atopic eczema during the first 12 months of life, compared between
the intervention and control groups. Results: Infants from the intervention
sites were significantly more likely than control infants to be breastfed to any
degree at 12 months (19.7% vs 11.4%; adjusted odds ratio [OR], 0.47; 95 con-
fidence interval [CI], 0.32-0.69), were more likely to be exclusively breastfed

11Kramer Shapiro Collet Ducruet, ... et al. ; [JAMA. 2001;285:413-420.

at 3 months (43.3% vs 6.4%; P¡.001) and at 6 months (7.9% vs 0.6%; P =
.01), and had a significant reduction in the risk of 1 or more gastrointestinal
tract infections (9.1% vs 13.2%; adjusted OR, 0.60; 95% CI, 0.40-0.91) and of
atopic eczema (3.3% vs 6.3%; adjusted OR, 0.54; 95% CI, 0.31-0.95), but no
significant reduction in respiratory tract infection (intervention group, 39.2%;
control group, 39.4%; adjusted OR, 0.87; 95% CI, 0.59-1.28). Conclusions:
Our experimental intervention increased the duration and degree (exclusivity)
of breastfeeding and decreased the risk of gastrointestinal tract infection and
atopic eczema in the first year of life. These results provide a solid scientific
underpinning for future interventions to promote breastfeeding.

The principal objective of PROBIT II is to examine whether the exper-
imental breastfeeding promotion intervention introduced in Belarus in 1996
and 1997 has effects detectable at 6 years of age on atopic disease, cognitive
development, behaviour, growth, obesity, and blood pressure. The compar-
ison of the experimental and control groups, when analyzed by intention to
treat, will allow the most rigorous examination to date of the causal relation-
ship between prolonged, exclusive breastfeeding and these important health
outcomes.

Statistical Aspects: Based on the results of our pilot study random sample
of PROBIT participants, we expect 86%, or 14,140, of the 16,442 subjects who
completed the 12-month follow-up in Phase I will participate in Phase II. The
Table shows the differences in the principal study outcomes detectable with
80% power, based on this sample size and an intention-to-treat analysis, with
two different assumptions for the value of the intra-cluster, among-individual
correlation (the intraclass correlation coefficient, or ICC): .01 and .03. (These
values reflect the range in ICCs from outcomes in Phase I of PROBIT.) As
can be seen, the projected sample size is ample for detecting clinically impor-
tant differences in the principal continuous study outcomes and should detect
moderate differences in the proportion of children with wheezing symptoms
(based on the ISAAC) questionnaire and positive skin-prick tests.

Table. Control Group Means and SDs, Proportions, and Differences
(∆)Detectable at P = .05 with 80% Power.
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Continuous Outcomes Mean SD ∆* ∆**
IQ (Total/Verbal/Performance) 100 15 1.6 2.6
SDQ 8.6 5.7 0.6 1.0
Systolic blood pressure (mm Hg) 95 10 1.1 1.8
Diastolic blood pressure (mm Hg) 58 12 1.3 2.1
Height (cm) 45 2.2 0.2 0.4
Body mass index (kg/m2) 15.2 1.8 0.2 0.3
Dichotomous Outcomes Proportion (%) ∆* ∆**
≥ 1 Positive skin-prick test 20% 4% 7%
Wheezing in past 12 months 8% 2.7% 4.1%
Based on intraclass correlation coefficients (ICC’s) of 0.01* and 0.03**.

Exercise. Assume a comparison of outcomes in 15 × 500 = 7500 children
in 15 hospitals and polyclinics randomly assigned to receive the experimental
intervention with those in 15 × 500 = 7500 children in the 15 assigned to
receive the control intervention. Calculate the detectable difference for the IQ
and wheezing variables.12

0.9 Another Cluster Randomized Controlled Trial

Informing Resource-Poor Populations and the Delivery of Entitled Health and
Social Services in Rural India: A Cluster Randomized Controlled Trial.13

Context A lack of awareness about entitled health and social services may
contribute to poor delivery of such services in developing countries, especially
among individuals of low socioeconomic status.
Objective To determine the impact of informing resource-poor rural popu-
lations about entitled services.
Design, Setting, and Participants Community-based, cluster random-
ized controlled trial conducted from May 2004 to May 2005 in 105 randomly
selected village clusters in Uttar Pradesh state in India. Households (548 in-
tervention and 497 control) were selected by a systematic sampling design,
including both low-caste and midto high-caste households.
Intervention Four to 6 public meetings were held in each intervention village
cluster to disseminate information on entitled health services, entitled educa-
tion services, and village governance requirements. No intervention took place
in control village clusters. Main Outcome Measures Visits by nurse midwife;
prenatal examinations, tetanus vaccinations, and prenatal supplements re-
ceived by pregnant women; vaccinations received by infants; excess school

12cf formula in the notes; because of slightly smaller numbers used in this exercise than
in grant application, your detectable differences will be slightly different.

13Pandey et al. JAMA. 2007;298(16):1867-1875

fees charged; occurrence of village council meetings; and development work in
villages.
Results At baseline, there were no significant differences in self-reported de-
livery of health and social services. After 1 year, intervention villagers re-
ported better delivery of several services compared with control villagers: in a
multivariate analysis, 30% more prenatal examinations (95% confidence inter-
val [CI], 17%-43%; P < .001), 27% more tetanus vaccinations (95% CI, 12%-
41%; P<.001), 24% more prenatal supplements (95% CI, 8%-39%; P=.003),
25% more infant vaccinations (95% CI, 8%-42%; P=.004), and decreased ex-
cess school fees of 8 rupees (95% CI, 4-13 rupees; P < .001). In a difference-
in-differences analysis, 21% more village council meetings were reported (95%
CI, 5%-36%; P=.01). There were no improvements in visits by a nurse midwife
or in development work in the villages. Both low-caste and mid- to high-caste
intervention households reported significant improvements in service delivery.
Conclusions Informing resource-poor rural populations in India about enti-
tled services enhanced the delivery of health and social services among both
low- and midto high-caste households. Interventions that emphasize educating
resource-poor populations about entitled services may improve the delivery of
such services. [Trial Registration clinicaltrials.gov Identifier: NCT00421291]

Methods: Setting and Sample Selection (from full text)

Our cluster-randomized trial sample size calculations were based on a 5%
significance level and 80% power. The sample size and power calculations are
driven by the number of village clusters, rather than the number of households
per village cluster. For proportional outcomes, to detect a 0.2 increase over
a control proportion of 0.5 with 10 households per cluster and a conservative
coefficient of variation of 0.5, we estimated needing 94 total clusters (47 per
arm). Increasing the number of households above 10 does not significantly
decrease the number of village clusters required. For school fees, to detect a 10-
rupee decline from a control of 35 rupees with 10 children per cluster, standard
deviation of 15 rupees, and a coefficient of variation of 0.5, we estimated
needing 82 total clusters. Our actual sample size included 105 total clusters.14

Excess school fees were defined as the school fees paid by students minus the
legal amount they can be charged (US $1=45 rupees). The unit of analysis for
this outcome was individual children. The unit of analysis for other outcomes
(eg, visits by nurse midwife, development work in village) was households.
For each outcome, we compared intervention and control groups, adjusting
standard errors for clustering at the village level. We used the regress and
cluster commands from Stata 9.2 statistical software (StataCorp, College

14Hayes RJ, Bennett S. Simple sample size calculation for cluster-randomized trials. Int
J Epidemiol. 1999; 28(2):319-326.
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Station, Texas) for these analyses. P .05 was set as the threshold for sig-
nificance. For 5 of 8 outcomes, comparing within-household changes from
baseline to follow-up was not possible, because households that reported those
outcomes at baseline were often not reporting on the same outcomes at 1 year.
For example, a household reporting on prenatal outcomes at baseline would
no longer have a pregnant woman to report prenatal outcomes on at 1 year.
For these, we additionally conducted a multivariate regression comparing in-
tervention to control at 1 year, using a random- effects model in which random
effects are at the village cluster level and standard errors are clustered at the
village cluster level. The regression adjusts for total population of the village
cluster, district size, household caste, and highest education attained in the
household. For the 3 remaining outcomes of visits by nurse midwife, village
council meetings, and development work in village, we conducted a within-
household difference-indifferences analysis, using a random effects model at
the village cluster level and clustering for standard errors at the village cluster
level. Focus groups were analyzed by proportion of respondents to questions.
Quotations representing dominant themes were recorded.

Exercise. Try to replicate the sample size calculations.
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